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Abstract
Modern applications exhibit memory access patterns with

complex spatial and temporal relationships. Traditional archi-
tectural simulators utilized to evaluate these applications
are highly sequential in nature, particularly for stateful
components like caches. In this paper, we present an innovative
approach to cache simulation by reframing the problem
from a deep learning perspective. We exploit the fact that
memory access traces in any part of a processor design can
be represented as two-dimensional heatmaps. Our key insight
is that the behaviour of a cache acts as a filter on these
heatmap images which can be learned as a function using deep
learning techniques. Leveraging this observation, we introduce
CacheBox, a framework that employs a Generative Adversarial
Network (GAN) to learn and replicate the filtering behaviour
of caches using memory access heatmaps. We demonstrate
that CacheBox effectively generalises across multiple state-of-
the-art benchmarks, various cache configurations, different
cache hierarchy levels, and even alternative microarchitectural
structures with high accuracy. We also show that CacheBox
enables highly parallelized inference, allowing for simultane-
ous processing of multiple memory access heatmaps.

1. Introduction
Modern processors generate complex patterns of mem-

ory accesses that reflect both program behaviour and
architectural influences. For caches, these patterns exhibit
temporal and spatial relationships that determine system
performance. While traditionally analyzed through deter-
ministic and sequential architectural simulators, these pat-
terns share characteristics with other domains where deep
learning has excelled at capturing complex relationships.

Specific contexts have driven bespoke solutions for archi-
tectural simulation, such as for manycore processors, where
accuracy may be traded for simulation throughput due to
the blow-up in instruction counts alongside core counts [10].
Such issues have also led to statistical techniques for
simulation like SimPoints [25], which enable architects to
focus only on applications’ most characteristic phases. Even
with these advanced techniques, the underlying mechanism
remains sequential simulation.

In this paper, we propose a novel alternative to cache
simulation, reconceptualized through the lens of deep learn-
ing, as shown in Figure 1. We exploit the fact that memory
traces can be lossily represented as 2D heatmap images.
Thus, the trace on any memory bus can be represented
as a heatmap image. Our key insight is that since caches
act as filters over memory access patterns (filtering an

Figure 1: Design and workflow of CacheBox

input stream of cache accesses into an output stream of
cache misses), this filter behaviour can be represented as a
transformation over memory access heatmap images. This
opens up an intriguing possibility: can we leverage deep
learning based image-to-image translation, to learn and
reproduce cache behaviour?

To this end, we propose CacheBox (CBox), a framework
which employs a Generative Adversarial Network (GAN)
to learn cache simulator behaviour. To our knowledge,
CacheBox is the first tool that uses 2D heatmaps to
learn microarchitectural behaviour. By representing memory
traces as heatmap images and cache specifications as model
parameters, we enable CBox to learn complex temporal and
spatial locality patterns that determine cache performance.
CBox can easily learn complex filters that depend on rela-
tionships between pixels spaced far apart in a heatmap im-
age. CBox learns long-term cache behaviour over heatmaps
representing around 50,000 memory operations per image.

We show that CBox can be simultaneously trained on
multiple cache configurations with high accuracy, enabling
efficient, parallel evaluation of different cache configura-
tions. CBox demonstrates remarkable versatility by effec-
tively generalizing across diverse benchmark suites, accu-
rately modelling multiple cache hierarchy levels (L1, L2 and
L3), adapting to completely novel cache configurations, and
can be easily extended to model other microarchitectural
features such as prefetchers. In our evaluation, we ensure
that all benchmarks seen during inference are entirely
unseen in training. We deliberately adopt this conservative
methodology of testing only on unfamiliar applications to
emphasize CBox’s generalizability.

CBox achieves high accuracy in predicting cache miss
patterns, with average absolute percentage difference in
hitrate prediction of 3.05% across diverse benchmark suites,
including SPEC, Ligra, and Polybench. The framework
demonstrates remarkable adaptability, successfully mod-
elling behaviour for cache configurations absent from



training data with average absolute hitrate differences
of 1.26–3.28%. CBox also parallelizes through batching,
achieving 2.4× speedup with batch size 32 compared to
sequential inference.

Our approach demonstrates that deep learning models
can effectively learn and generalize cache behaviour across
different applications, cache configurations, and microarchi-
tectural features. This work opens up new possibilities for
architectural simulation by showing how modern machine
learning techniques can be applied to computer architecture
problems. Our contributions are as follows:

• CacheBox (CBox): a GAN-based framework that
accurately models cache filtering behaviour utilizing
heatmaps of cache memory access patterns.

• CB-GAN: a modified image-to-image GAN, that
can incorporate cache parameters along with input
heatmap images of memory access patterns.

• We show that CBox generalises across benchmark
suites, cache configurations, cache hierarchy levels,
and even to prefetching with high fidelity and
without requiring retraining per variant.

• We show that CBox enables parallelized inference
with 2.4× speedup at batch size 32, enabling rapid
design space exploration.

2. Motivation and Key Idea
Memory address traces provide rich information about

programs’ behaviour. Architectural cache simulators often
rely on such traces combined with their execution model
to establish whether a given memory access was a hit or
miss in a particular cache level. Both the memory access
address traces (as input) and the hit-and-miss traces (as
output) are represented sequentially as text files.

These traces often become cumbersome to use and
analyse. As an alternative, heatmaps [6, 13] offer an intuitive
visualization of trace data. For example, Hashemi et al. [13]
use neural networks to identify memory access patterns and
utilize heatmaps to understand the underlying decision of
their neural network. Heatmaps have also proven valuable
for architectural studies and analysis. Dangwal et al. [6]
used heatmaps to represent and analyse memory access
patterns for privacy-preserving trace wringing.

We observe (Figure 2) that buses between components
can have their memory access traces encoded as heatmaps,
capturing both their temporal evolution and behavioural
characteristics. Our key insight is that a cache acts as a filter
on the heatmap of the cache accesses (before the cache) to
produce the heatmap of the cache misses (after the cache), as
shown in Figures 2 and 3. This enables us to transform the
problem of cache simulation from a sequential, text-based
analysis to a visual, learning-based approach. We transform
the memory address trace entering cache level i into an
access heatmap, while converting the corresponding miss
trace exiting the same cache level into a miss heatmap. Thus
we fundamentally reframe the cache as a filter over heatmap
images, enabling us to leverage neural networks to model
these complex spatial and temporal filtering behaviours.

Figure 2: Caches act as filters over memory access traces
to produce traces of memory accesses that miss in that
particular cache level. CacheBox learns this filter behaviour.

(a) Access Heatmap (b) Miss Heatmap
Figure 3: Access (a) and Miss (b) heatmaps for a benchmark
from Polyhedral benchmark suite for L1D cache. Both have
dimensions of 512×512 and 100 accesses per column, for a
51,200 memory access window. Miss heatmaps represent
the L1D cache misses within the window.

3. Design
Here we detail the design of CBox, as shown in

Figure 1. We describe the representation of 2D memory
access heatmaps, which are utilized by CBox’s Generative
Adversarial Network (CB-GAN). CB-GAN predicts the hits
and misses based on the memory accesses in the input
heatmap, generating a miss heatmap which can be used to
calculate architectural metrics like hit rate.

3.1. Heatmap Representation
We generate a heatmap from memory access addresses

by projecting the memory access trace onto a fixed-size
modulo-mapping of the memory space. The heatmap’s x-
axis is the instruction count over time, and the y-axis maps
the memory addresses. We perform modulo operations on
each memory address using the heatmap’s vertical size.
Likewise, we group the instructions over time into bins
within windows of a specified number of instructions.
Despite this binning, the horizontal dimension of the
heatmap can rapidly expand with instruction count, making
the heatmap very wide. We divide this larger heatmap
into smaller ones, each capturing a smaller number of
instructions. Finally, each pixel indicates the total number
of memory accesses to that particular modulo-memory
address during one instruction window.
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(a) Real Access
heatmap

(b) Real Miss
Heatmap

(c) Synthetic
Miss Heatmap

Figure 4: Consecutive (top and bottom) pairs of Real Access,
Real Miss, and Synthetic Miss heatmaps. The first 30%
of each heatmap in the second row overlaps with the last
30% of the previous one (in the first row).

An example heatmap is shown in Figure 3a, representing
a subset of the memory accesses of a Polyhedral benchmark.
The y-axis represents the memory addresses modulo 512,
and the x-axis represents 51200 memory accesses, specif-
ically 512 instruction windows of 100 instructions each.
Each pixel represents memory accesses to that particular
512-modulo-memory address in a 100-instruction window.

We generate two sets of heatmaps for a cache. The
first set, the access heatmaps, show the memory accesses
input to the cache; the total of all the pixel values gives the
total number of memory accesses. The second set, the miss
heatmaps, show the memory accesses that incur misses
when the cache is accessed; the sum of all pixel values gives
the total number of misses. Figure 3b shows a miss heatmap
generated after the L1 Data cache is accessed. The patterns
in the heatmaps indicate memory access trends, including
spatio-temporal locality information and the behaviour of
the cache based on its configuration.

3.1.1. Utilizing Overlap in Heatmaps. To preserve in-
formation regarding local program behaviour, we maintain
redundant overlap segments between each pair of heatmaps
(Figure 4). This overlap retains spatio-temporal information
when splitting the large heatmap, acting as a “warmup” in
each heatmap image. We experimented with varying degrees
of overlap between successive heatmaps and find that a 30%
overlap yields the best results. In this setup, the initial 30%
of each heatmap is duplicated in the heatmap immediately
preceding it. Figure 4 shows consecutive pairs of Real
access, Real miss, and Synthetic miss heatmaps (described
further in Section 3.2) representing the overlapped regions.
Considering the Real access heatmap pair, the gray-shaded
area shows the overlap with the previous heatmap. The
white-bordered box in the top heatmap shows the overlap
with the subsequent (bottom) heatmap. Thus, the intersec-
tion of the gray-shaded area and the white-bordered box
in the bottom heatmap shows the part overlapped with the
top heatmap.

3.2. The CB-GAN Model

CBox employs a GAN model (CB-GAN) to predict the
miss heatmap for a given access heatmap, as shown in
Figure 1. CB-GAN is similar to a Pix2Pix model, which
is a GAN-based deep learning model for image-to-image
translation [12, 14], but is specialised for learning architec-
tural cache simulator behaviour. CB-GAN has a generator
and a discriminator that are trained concurrently. The
generator produces realistic images, while the discriminator
distinguishes between real and synthetic images. It is trained
using supervised learning, and produces output images that
look similar to the desired targets by learning selective
features from the input image. We train CB-GAN on pairs
of access heatmaps and miss heatmaps, and we expect the
model to generate Synthetic miss heatmaps that closely
resemble the Real miss heatmaps.

3.2.1. Model Structure. CB-GAN can recognize spatio-
temporal structures in memory access heatmaps and selec-
tively filters out memory accesses that hit in the cache to
create the miss heatmap.
Generator. We employ an 8-layer U-Net [23] encoder-
decoder as the generator model, with a modification that
enables it to take numerical inputs for cache parameters,
as shown in Figure 5. The U-Net model (Unet256) has
eight down-sampling blocks and eight up-sampling blocks.
Each down-sampling block progressively reduces the spatial
dimensions of the input image using convolutions, and the
up-sampling blocks reconstruct the high-resolution features,
gradually restoring the spatial dimensions of the input
image. Skip connections in the encoder-decoder structure
connect corresponding encoder and decoder layers through
which outputs from down-sampling blocks are concatenated
to outputs of up-sampling blocks and fed into the next up-
sampling block. We provide cache parameters (number of
cache sets and ways) as inputs to the generator in CB-
GAN along with the access heatmap, to provide additional
context to the model regarding the cache architecture,
further detailed in Section 3.2.3. They are passed through 3
fully-connected layers, and the reshaped output is appended
to the output of the last down-sampling block and then fed
into the first up-sampling block.
Discriminator. The discriminator is a PatchGAN [14, 15],
which discriminates between real and synthetic images
at the granularity of image patches. These patches have
dimensions of N×N, where the receptive field N is smaller
than the input image dimensions, which enhances the
efficacy of the model in capturing local image characteristics.
The discriminator takes two inputs: the concatenation of
the input image and the target output image marked with a
True ground truth label, and the concatenation of the input
image and the synthetic image with a False ground truth
label. It evaluates each patch in the concatenated inputs
as real or synthetic and generates a truth map, which is
further processed with the binary cross-entropy loss. The
loss value provides feedback to train the discriminator.
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(a) Generator (b) Discriminator
Figure 5: (a) CB-GAN Generator: An 8-layer UNet, modified to take cache parameters as inputs. (b) CB-GAN Discriminator:
A 16×16 convolutional PatchGAN. ReLU indicates the Rectified Linear Unit activation function.

3.2.2. Objective Function. The loss function or objective
function of CB-GAN is a weighted sum of two compo-
nents: adversarial loss LcGAN(G, D) and reconstruction
loss LL1(G). The adversarial loss quantifies the ability of
the generator to create realistic images and measures the
discriminator’s capability to distinguish between real and
synthetic images. Reconstruction loss measures how closely
the generated image resembles the target output image in
terms of the content of the image. The hyperparameter λ
is utilized to tune the weights between the two compo-
nents of the loss function. The generator minimizes the
reconstruction loss as well as the adversarial loss, while
the discriminator aims to maximize adversarial loss. The
objective function G∗ can be expressed as follows:

G∗ = argminGmaxDLcGAN(G, D) + λLL1(G) (1)

The adversarial loss can be further expressed as follows:

LcGAN(G, D) =Ex,y[log D(x, y)]
+ Ex,z[log(1 – D(x, G(x, z)))]

(2)

where x is the input image, y is the target image and z
is random noise. The discriminator makes decisions based
on the concatenation of the target output and the input
image as well as the synthetic output and input image.

3.2.3. Inputs. CB-GAN takes a pair of images as input
while training: the input (access heatmap) and the target
output (Real miss heatmap) as well as numerical inputs
(cache parameters). Each Real access-miss heatmap pair
represents the same chunk of the program’s memory
address trace before and after the cache is accessed. Once
trained, CB-GAN can take a Real access heatmap and
cache parameters as input and generate (Synthetic) miss
heatmaps after a particular cache level is accessed.
Cache Parameters. These are the number of sets and ways
in the cache, which provide additional information to the
CB-GAN model regarding the size and associativity of the
cache. We provide cache parameters during both training
and inference. We only show results with these parameters,
but others can easily be added.

Figure 6: CBox training procedure. The input (Real access),
output (Synthetic miss), and ground truth (Real miss)
heatmaps are shown along with the cache parameter inputs.

3.2.4. Outputs. CB-GAN generates a synthetic image
during both training and inference. The synthetic image
resembles the target output image provided as input to
the model. The synthetic image is a miss heatmap, further
referred to as the Synthetic miss heatmap.

4. Methodology
In this section, we outline the implementation details of

CBox, including benchmarks employed, heatmap generation,
running CB-GAN, and calculating architectural metrics.

4.1. Dataset
For our dataset, we transform memory access traces

from SPEC (comprises SPEC 2006 [28] and SPEC 2017 [29]
from the Third Data Prefetching Championship (DPC3) [7]),
Ligra [3, 27] and Polyhedral Benchmark suite (Poly-
bench) [22]. All traces are collected using Pin [18]. We utilize
189 SPEC, 100 Ligra, and 32 Polybench benchmarks, respec-
tively. We split each benchmark suite 80-20 for training and
inference, resulting in 255 training (SPEC: 150, Polybench:
25, Ligra: 80) and 66 testing (SPEC: 39, Polybench: 7, Ligra:
20) benchmarks. Most of our experiments are run on SPEC
due to high volume of data for this suite.

Importantly, we always maintain strict separation be-
tween training and testing datasets to ensure robust eval-
uation of the generalizability of CBox. When multiple
traces of the same benchmark exist in a suite, we allocate
all traces from that benchmark exclusively to either the
training or testing set, never distributing across both. During
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inference, CBox only encounters programs it has never
seen in training. Thus, our reported results reflect
the performance of CBox on completely unseen
benchmarks rather than merely unseen inputs to familiar
programs, providing a strong assessment of its ability to
capture fundamental cache behaviours.

4.2. Heatmap Generation
We generate Real (ground-truth) access heatmaps for

the benchmark suites described above. We then leverage
the hit/miss information for each cache memory access
operation of the benchmark traces from Champsim [11]
to construct Real miss heatmaps, establishing the paired
training dataset. We tested various modulo mapping strate-
gies and find that using a modulo of 512 gives the highest
prediction accuracy. Similarly, we find that window size
of 100 provides a compact, lossy representation, while still
retaining key information about cache state and access
patterns. Thus, we fix our heatmaps to 512×512 with 100-
instruction windows, and 30% overlapping between consec-
utive heatmaps. We simulate different cache configurations
to collect diverse miss heatmaps for training. Each cache
configuration is indicated by the number of cache sets and
ways, with a fixed 64 byte block size.

We use a bimodal branch predictor and LRU replacement
policy in ChampSim to generate the training miss heatmaps.
We do not utilize prefetching for any cache level. The
Champsim simulation runs 1 billion instructions without
warm-up. Heatmap generation is performed single-threaded.
However, for inference (most users’ case), Pin can dump
heatmaps faster than traces and heatmap generation from
traces is highly parallelizable. The training data (Real access
and miss heatmaps of 225 benchmarks from three suites)
requires approximately 50 GB of space on disk (versus
roughly 60GB for ChampSim traces). However, this is a
one-time cost since, once trained, it results in a less than
1GB CBox model.

4.3. CBox GAN Model
We train CB-GAN with a per-pixel L1 reconstruction

loss (Equation (1)) balanced by a λ value of 150. In the
generator, we incorporate cache parameters after feeding
them through 3 fully connected layers, reshaping and
concatenating them to the output of the encoder, and finally
feeding them into the first decoder block. As a result, in each
iteration, the weights of the dense layers linked to the cache
parameters are adjusted during backpropagation alongside
other weights. Throughout our evaluations (excluding Sec-
tion 5.4), we employ the Unet256 generator and a 16×16
PatchGAN discriminator, configured with 128 ngf (number
of generator filters) and 64 ndf (number of discriminator
filters). Finally, the 512×512 input access and miss heatmaps
provided to the model have their original pixel values scaled
by two. CB-GAN utilizes random batching during training.

4.4. Hit Rate Calculation in CBox
CBox generates Synthetic miss heatmaps for a given

cache level which can be used to calculate miss rate. The

sum of the pixel values in a Synthetic miss heatmap
is equivalent to the total misses incurred in the window
represented by the heatmap. Similarly, the sum of the
pixel values in the Real access heatmaps is the total cache
accesses. With these, we can calculate the hit or miss rate
for a given Real access and Synthetic miss heatmap pair.
The overlapped region should be accounted for only once
to calculate the correct miss rate for the entire trace.

To measure accuracy of CB-GAN for a given benchmark,
we measure the hit rate of the generated Synthetic miss
heatmaps and compare it with the hit rate of ground
truth access-miss heatmap pairs. The average absolute
percentage difference represents the mean of the absolute
percentage differences between the predicted and true
hit rates for the specified benchmarks. This captures the
architectural significance of prediction errors across all
hit rate regimes — where a 5% deviation has consistent
meaning whether the actual hit rate is 10% or 90%. This
metric ensures balanced evaluation across diverse cache
behaviours and configurations.

5. Evaluating the CacheBox
Here we showcase the capability of CBox to learn cache

behaviour in different settings. We address the following
key research questions:

1) RQ1: How well does CBox generalize to previously
unseen benchmarks across benchmark suites?

2) RQ2: Can CBox accurately model diverse cache
configurations?

3) RQ3: Does CBox effectively predict behaviour for
cache configurations absent from training data?

4) RQ4: How does CBox perform across different
cache hierarchy levels?

5) RQ5: What advantages does parallelized inference
offer to CBox?

6) RQ6: How accurately does CBox reproduce cache
response compared to traditional simulation?

7) RQ7: Can CBox capture the behaviour of other
microarchitectural elements such as prefetchers?

5.1. RQ1: Adapting to unseen applications
Accurately modelling cache behaviour across diverse

application domains is challenging. We investigate CBox’s
ability to capture cache dynamics across heterogeneous
benchmark suites and learn generalizable cache access
patterns. We train first on a L1 Data cache with 64set-
12way cache configuration. Each training batch contains
a mixture of heatmap images from the SPEC, Ligra, and
Polybench suites. Our experiments reveal that CBox can
generate Synthetic miss heatmaps with an average abso-
lute percentage difference of 3.05% between predicted and
true hit rates, as shown in Figure 7.

Key Takeaway: CBox can extract and generalize cache
behaviour across fundamentally different computational
workloads, from scientific computing and graph algorithms
to standard performance benchmarks.
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Figure 7: (top) True and predicted hit rates for CB-GAN trained on SPEC, Ligra, and Polybench for a 64set-12way L1
cache. (bottom) Absolute percentage difference in hit rates for the same. Black dots and green stars on the bars indicate
absolute percentage differences of <1% and 1–2%, respectively. The average case absolute percentage difference is 3.05%.

Figure 8: Absolute percentage difference in hit rates for SPEC on four L1 cache configurations. The average is 2.79%, 2.06%,
2.59%, and 2.46% for 64set-12way, 128set-12way, 128set-6way, and 128set-3way cache configurations, respectively. Black
dots and green stars on the bars indicate absolute percentage differences of <1% and 1–2%, respectively.

5.2. RQ2: Supporting diverse cache configs
Cache parameters significantly impact memory system

behaviour, but CBox generalizes across parameters. We
train a single CB-GAN model on SPEC benchmarks for
four different L1 Data cache configurations with the access-
miss heatmap pairs for all cache configurations batched
together. The CB-GAN model thus learns to distinguish
between heatmaps of different cache configurations via the
cache parameter inputs. Results are shown in Figure 8. True
hit rates differ slightly across cache configurations for a
given benchmark trace, and predicted hit rates follow simi-
larly. The average case exhibits consistently low absolute
percentage differences of 2.79%, 2.06%, 2.59%, and 2.46% for
64set-12way, 128set-12way, 128set-6way, and 128set-3way
L1 cache configurations, respectively.

Key Takeaway: We do not need to train n independent
CB-GAN models for n different cache configurations. A
single CB-GAN model trained on different cache configura-
tions can accurately predict Synthetic miss heatmaps for
each cache configuration in the set.

5.3. RQ3: Generalizing to unseen cache configs
Predicting cache behaviour for configurations entirely

absent from training data is critical for efficient design space
exploration. To demonstrate CBox’s ability to generalize

to previously unseen cache configurations, we use the CB-
GAN model trained on four L1 Data cache configurations
from Section 5.2. We test this model’s accuracy on three
entirely novel L1 cache configurations: 256set-6way, 256set-
12way, and 32set-12way. As shown in Figure 9, the average
case absolute percentage difference between true and pre-
dicted hit rates is 1.96%, 1.26% and 3.28% for 256set-6way,
256set-12way, and 32set-12way L1 cache configurations
respectively. Thus, CB-GAN models trained on diverse cache
configurations can successfully predict miss heatmaps for
entirely unseen cache configurations with high fidelity.

Key Takeaway: We can generalize across cache con-
figurations without requiring retraining for each new con-
figuration, making CBox well-suited for early-stage design
space exploration.

5.4. RQ4: Adapting across multiple cache levels
Modern architectures employ cache hierarchies with

distinct size, associativity, latency, and miss rate profiles for
each level. This presents a significant modelling challenge,
as each cache level exhibits unique filtering behaviours
based on its position in the memory hierarchy and its
architectural parameters. To evaluate CBox’s multi-level
cache modelling capabilities, we examine a 64set-12way L1
Data cache, a substantially larger 1024set-8way L2 cache
and a 2048set-16way L3 cache using SPEC benchmarks.
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Figure 9: Absolute percentage difference in hit rates for SPEC, trained on four L1 configurations and tested on three unseen
L1 configurations. The average is 1.96%, 1.26% and 3.28% for 256set-6way, 256set-12way, and 32set-12way respectively.
Black dots and green stars on the bars indicate absolute percentage differences of <1% and 1–2%, respectively.

Figure 10: Absolute percentage difference in hit rates on SPEC for combined model trained on L1+L2+L3 cache, and
standalone models trained exclusively on L1, L2 or L3 caches. Benchmarks with hit rates in low data regime (indicated
by + for L1, ∗ for L2, and ø for L3 cache) are excluded. The average absolute percentage difference in hit rates for the
combined model is 3.23%, 17.63%, and 14.06% for the L1, L2 and L3 caches. For standalone, it is 3.70% for L1, 11.40% for
L2, and 15.89% for L3 caches. Black dots and green stars on the bars indicate absolute percentage differences of <1% and
1–2%, respectively.

We explore two training paradigms to assess whether
hierarchical cache behaviour is better captured through
integrated or level-specific models. The first is a combined
model trained simultaneously on the L1, L2 and L3 cache
configurations. The second is specialized standalone models
trained exclusively on individual cache hierarchy levels.

The standalone models are given explicit set and
way cache parameters. In contrast, the combined model
is trained without any cache parameters, specifically to
evaluate CB-GAN’s ability to generalize without explicit
architectural context. CB-GAN uses a Unet512 generator for
the combined, standalone-L2, and standalone-L3 models to
accommodate their highly variable hit rate patterns, while
a Unet256 generator suffices for the standalone-L1 model.
Both standalone and combined models employ a larger
142×142 PatchGAN discriminator model.

As shown in Figure 10, the combined model achieves
average absolute percentage differences of 3.23% for L1
caches, 17.63% for L2 caches, and 14.06% for L3 caches. On
the other hand, the absolute percentage difference in the
average case is 3.70% for the standalone-L1 model, 11.40%
for the standalone-L2 model and 15.89% for the standalone-
L3 model. Benchmarks with hit rates in the low data regime
were excluded from the inference evaluation as explained

in Section 6.1. In Figure 10, symbols next to benchmark
names indicate excluded benchmarks at different cache
levels, namely (+) for L1, (∗) for L2, and (ø) for L3.

Both the combined model and specialized standalone
models achieve comparable hit rate predictions. However,
both models exhibit higher prediction accuracy for L1
compared to L2 and L3 caches, which can be attributed to
the fundamentally different memory access patterns present
across levels. We anticipate that with additional training
data representing a broader spectrum of hit rates, both
models would attain higher accuracy across all cache levels.

Key Takeaway: CBox can generalize across cache hi-
erarchy levels, offering flexibility to choose between a
unified model or specialized models. The combined model
effectively predicts cache behaviour without explicit cache-
specific parameters, indicating that CBox can identify
distinctive filtering behaviours across the cache hierarchy
from the access and hit patterns alone.

5.5. RQ5: Parallelizing CBox inference
Traditional architectural simulation approaches are in-

herently sequential, limiting their scalability. We explore
CBox’s potential for parallelized inference, leveraging batch
processing to evaluate multiple heatmaps simultaneously.
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Figure 11: CB-GAN inference time across batch sizes (1 - 32) on an NVIDIA RTX A6000 GPU for model trained on
64set-12way L1 with SPEC benchmarks. Batch size of 32 gives 2.4× speedup in average inference time over batch size of 1.

Utilizing different batch sizes, we calculate CBox’s inference
time for each benchmark, which is the time required to
generate Synthetic miss heatmaps corresponding to all
Real access heatmaps of the benchmark during inference.

The results of parallelizing inference on CB-GAN model
across batch sizes on a system with an NVIDIA RTX A6000
GPU (with Intel Xeon E5-2603 CPU and 32 GB memory) are
shown in Figure 11. The CB-GAN model is trained on four
L1 Data cache configurations (from Section 5.2), and the
parallelized inference results correspond to the 64set-12way
cache configuration. For sequential inference (batch size 1),
the average time to predict all Synthetic miss heatmaps is
108.98 seconds. As we increase the parallelization via batch
size, the inference time decreases significantly, reaching just
45.01 seconds for batch size 32 which is a 2.4× reduction
in average inference time.

While a true apples-to-apples comparison with tra-
ditional simulation is not possible (since CBox is only
modelling simulator behaviour, not simulating), we do
provide a comparison in Figure 11 to MultiCacheSim [17], a
high throughput cache-only simulator. Given the imprecise
nature of the comparison, we do not claim a specific con-
tribution but note 1.61×-1.81× speedups with an average
of 1.67× for sequential CBox compared to MultiCacheSim.

Key Takeaway: By processing multiple Real access
heatmaps simultaneously, CBox can significantly reduce
time for architectural analysis. This is particularly valuable
for large-scale architectural studies and CBox provides
a distinct advantage over traditionally sequential cache
simulation techniques in this case.

5.6. RQ6: CBox cache response characteristics
To facilitate comprehensive architectural analysis, we

demonstrate the cache response characteristics of CBox
by analyzing true and predicted hit rates leveraging the
CB-GAN model trained on four L1 cache configurations
(from Section 5.2). As shown in Figure 12, CBox performs
high-accuracy hit rate predictions as evidenced by the dense
cluster of data points in the upper-right quadrant, which
represents benchmark traces with true hit rates exceeding
90%. For benchmark traces with intermediate hit rates
(70% to 90%), we observe a different pattern. Predicted hit
rates trend higher than true hit rates, indicating a positive

Figure 12: true and predicted hit rates for different cache
configurations on SPEC benchmarks. Each datapoint is one
benchmark running on a given cache configuration.

correlation bias. This bias is pronounced in two specific
benchmark traces, 607-4004B and 607-3477B. We attribute
this positive correlation to the composition of our training
dataset, which contains a disproportionate number of high
hit rate benchmark traces, as further discussed in Section 6.1.
Note again that we strictly separate our training and testing
benchmarks and thus all benchmarks are unseen, which
could also contribute to the bias. In the real world, one
may train on some inputs and test on other inputs from
the same benchmark, which could improve the bias.

Key Takeaway: Despite the relative imbalance of low
and high hit rate benchmark traces in our training data,
CBox maintains robust prediction performance across a
majority of inference workloads.

5.7. RQ7: Extending CBox to Cache Prefetching
We extend CBox to model microarchitectural compo-

nents other than caches, specifically cache prefetchers.
Modern processors employ sophisticated prefetchers to
anticipate and mitigate cache misses. Given a memory
address trace, prefetchers analyze access patterns and
proactively fetch likely future memory addresses before
they are explicitly requested. We utilize CBox to model
this transformation exhibited by prefetchers by capturing
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Figure 13: Mean Squared Error (MSE) and Structural
Similarity (SSIM) of CB-GAN’s predictions of Next Line
Prefetcher behaviour for a 64set-12way L1 cache on SPEC
2017 benchmarks.

both the address traces encountered by prefetchers and the
resulting prefetched addresses as paired heatmaps.

We generate Real access heatmaps from address traces
encountered by the prefetcher and corresponding Real
prefetch heatmaps from the prefetched addresses. These
heatmap pairs capture both spatial locality (relationship
between addresses) and temporal locality (access timing
patterns). The CB-GAN model is trained using these access-
prefetch heatmap pairs to learn prefetcher behaviour. Dur-
ing inference, the Synthetic heatmaps produced by the
trained CB-GAN model represent the memory addresses
that would be prefetched by the cache prefetcher under
given access address patterns. To evaluate prediction ac-
curacy, we employ two complementary metrics: Mean
Squared Error (MSE) and Structural Similarity Metric (SSIM).
MSE measures the average squared per-pixel difference
between Real and Synthetic prefetch heatmaps, with
lower values indicating better performance. SSIM quantifies
the structural information similarity between Real and
Synthetic prefetch heatmaps, producing scores from -1 to
1, where 1 indicates perfect similarity.

We train CB-GAN on next-line prefetcher for a 64set-
12way L1 Data cache using SPEC 2017 [29] benchmarks
(only a subset of SPEC is used due to computational resource
limitations). As shown in Figure 13, the consistently low
MSE values coupled with high SSIM scores confirm that
CBox can accurately model cache prefetcher behaviour.

Key Takeaway: CBox’s heatmap-based approach is
highly adaptable for modelling microarchitectural compo-
nents beyond caches. We hypothesize that CBox can be
extended to other prefetching algorithms and potentially
other microarchitectural components.

6. Discussion, Future Work, and Limitations
6.1. Understanding the Data Ecosystem of CBox

Data quality and distribution are critical to the perfor-
mance of the CB-GAN model. We utilize a dataset of 321
benchmarks comprising 189 SPEC, 100 Ligra, and 32 Poly-
bench benchmarks, splitting each benchmark suite 80-20 for

Figure 14: Histogram of true hit rates on a 64set-12way L1
cache of all SPEC 2006 and SPEC 2017 benchmarks.

training and inference, as detailed in Section 4.1. Analysis
of this dataset reveals patterns in hit rate distribution that
directly impact model training and inference.

Figure 14 presents a histogram of true hit rates for all
189 SPEC benchmarks on a 64set-12way L1 Data cache.
A majority of benchmarks exhibit very high hit rates,
with over 95% of the SPEC benchmarks with hit rates
exceeding 65%. Similarly, 70% of the 189 SPEC benchmarks
have true hit rates higher than 40% on a 1024set-8way
L2 cache, and 55% of the SPEC benchmarks have true hit
rates higher than 35% on a 2048set-16way L3 cache. Even
when considering all benchmark suites combined (including
SPEC, Ligra and Polybench), more than 92% of the 321
benchmarks demonstrate true hit rates greater than 65% on
a 64set-12way L1 cache. This stems primarily from SPEC
being the largest benchmark suite in our dataset. Even
though Ligra and Polybench exhibit more representative hit
rate distributions, within SPEC, high-hit rate benchmarks
significantly outnumber low-hit rate ones.

To ensure we are training and testing in the high data
regime, based on the hit rate distribution of our dataset, we
perform training and inference only utilizing benchmarks
with hit rates greater than 65%, 40%, and 35% for L1,
L2, and L3 caches. We apply these thresholds across all
benchmarks in our dataset. All evaluations presented in
Section 5 follow this approach. For instance, we do not
present the absolute percentage difference for benchmarks
in the low data regime which exhibit true hit rates below the
threshold on L1, L2 and L3 caches in Figure 10, as indicated
by the +, ∗ and ø symbols next to the benchmark names
respectively. We observe that throughout our evaluations,
CBox effectively learns cache filtering behaviour within
the high data regime. However, limited data for low hit
rate benchmarks prevents CBox from modelling those
cases accurately, which manifests in part as the positive
correlation bias visible in Figure 12. This limitation can
be addressed by incorporating more applications with low
hit rates into the training dataset. Nevertheless, since most
real-world applications exhibit high cache hit rates, our
current CB-GAN models remain capable of making accurate
inferences on new applications. We conclude that CBox
generalises well when sufficient data is available.
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App REaLTabFormer Traditional CBox
Tab-Base Tab-RD Tab-IC HRD STM best worst average

600 23.90 5.20 23.70 5.90 18.20 0.00 0.15 0.07
602 56.60 27.30 19.20 19.70 29.00 1.53 5.27 3.49
607 11.20 15.10 11.00 15.20 9.70 0.29 16.23 10.83
631 81.50 81.60 43.50 0.00 0.20 0.15 0.15 0.15
638 38.40 8.20 27.70 33.20 8.90 0.01 8.96 3.85
avg % diff 42.32 27.48 25.02 14.80 13.20 0.39 6.15 3.68

TABLE 1: Absolute Percentage Difference comparison of
L1 cache miss rate prediction.

6.2. Neural Networks for Architectural Analysis
Previous works have applied deep learning models to

architectural contexts. Shi et. al. [26] utilize a transformer
model, REaLTabFormer, for memory workload synthesis.
They evaluate the synthesis quality based on the similarity
between original and generated workloads using miss
ratios. We compare CBox against REaLTabFormer [26]
and traditional approaches for memory behaviour analysis,
namely Hierarchicial Reuse Distance (HRD) [19], and Spatio-
Temporal Memory (STM) model [2]. We report the absolute
percentage difference between true and predicted hit rates
for SPEC 2017 benchmarks on an L1 Data cache. Note that
CBox employs Champsim for data collection and validation,
while REaLTabFormer uses the Gem5 simulator.

The results are shown in Table 1. For CBox, there
can be multiple phases for the same benchmark (i.e. both
602.gcc_s-734B and 602.gcc_s-2375B belong to tgcc), so
we report the worst, best and average absolute percentage
difference for each. CBox has the lowest average absolute
percentage difference for the L1 cache among all methods.
The ‘best’ column shows that if we choose the lowest ab-
solute percentage difference phase for the five benchmarks,
the overall average is below 0.39%. Even if we pick the
‘worst’ phase for each benchmark, the overall average is
below 6.15%, which is the lowest among all methods. If we
compute the ‘average’ absolute percentage difference of all
phases of the same benchmark then the overall average
absolute across the five benchmarks is 3.68%.

6.3. Future Work and Limitations
Caches feature many options, such as further prefetch-

ing strategies, presence/absence of victim caches, inclu-
sion/exclusion, etc which we have not studied here. We
leave more complete treatment to future work. To help
modelling such features, we expect that model parameters
could be added to enable/disable them at inference time.
Our study assumes a cache block size of 64B; future work
could evaluate its parameterisation.

7. Related Work
7.1. Computer Architecture Simulation

Architectural simulators are the most common tools
that computer architects use, including for design space
exploration, performance/power analysis, etc. Many recently
published computer architecture papers are verified us-
ing popular simulators such as Gem5 [4], PTLsim [32],
Sniper [5], and ZSim [24] to name a few [1]. Gober et

al. built ChampSim [11], a highly modular trace-based
microarchitecture simulator, that can model modern high-
performance out-of-order (OoO) cores. We use ChampSim
to collect cache hit-and-miss traces as ground truth data.

7.2. Accelerating the Simulation Process
Many methods and strategies have been proposed to

accelerate notoriously slow architectural simulation.
Sampled Simulation. Sampling is a popular technique where
instead of simulating the entire program, only a small num-
ber of samples are simulated. This reduces the simulation
time and provides a good estimate of the benchmark perfor-
mance. Two methods commonly used to select a subset of
representative instructions are statistical sampling and tar-
get sampling. Statistical sampling is typically implemented
by randomly selecting samples from the entire instruction
stream or periodically from regular intervals [30, 31, 33].
Targeted sampling involves selecting sampling points after
analyzing a program’s behaviour. The program is first
grouped into different phases, in which the instructions
share similar behaviour, and then single sample units are
picked from each phase [21, 25].
Statistical Simulation. Statistical simulation reduces over-
head by combining detailed and analytical simulation [2, 9,
19, 20, 26]. A statistical profile of the program’s character-
istics is first generated with trace-based tools. The profile
is then used to create an instruction trace that is fed into a
trace-driven simulator. Simulation is made quicker because
the synthetic traces are shorter.
Parallel Simulation. Parallel simulation reduces runtime by
running different sampling points simultaneously, taking ad-
vantage of modern multi-core processors [5, 8, 24]. Although
these methods can significantly speed up simulation, the use
of instruction sequences is serial in nature, even with the
help of deep learning [16]. Our alternative, learning-based
mechanism, uses heatmaps as input, which also enables
parallelization. CBox is not strictly a simulator, but can
reduce the time required to model cache behaviour, and
we expect future advances could incorporate more features,
e.g. energy models.

8. Conclusion
CacheBox (CBox) is a novel framework that utilizes

heatmap-based representations of microarchitectural com-
ponents and a Generative Adversarial Network (GAN)
to model architectural cache simulator behaviour. Our
evaluation shows that the CBox achieves high accuracy
in predicting cache hit patterns while significantly re-
ducing computational time through parallelized inference,
and demonstrates robust generalization capabilities across
different cache configurations and cache hierarchy levels.
This research shows the potential of neural networks for
architectural analysis and opens up possibilities for further
progress, such as modelling additional parameters like
power and latency, investigating multicore architectures,
and applying similar heatmap-based transformations to
other performance-critical microarchitectural components.
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Appendix
1. Abstract

This artifact provides the code, scripts, and a subset of
the data used in our paper. Due to the large size of the full
datasets, we include only representative portions.

Our workflow takes memory access traces from bench-
marks (SPEC, Ligra, Polybench) generated with ChampSim
and converts them into memory access heatmaps. Real
access and miss heatmaps are generated as ground truth
for training and evaluation of the CacheBox_GAN model.
After training, the model produces synthetic miss heatmaps,
which are then used with real access heatmaps to compute
predicted cache hit rates. Comparison with true hit rates
enables evaluation of model accuracy.

We provide a reference example demonstrating the
workflow from raw traces to cache hit-rate evaluation, pre-
trained model weights for RQ2, and scripts to reproduce
a subset of the experiments. While full datasets are not
included due to size, scripts and data snippets are provided
for all steps.

1.1. Artifact contents. CacheBox/

• HeatmapDataGenerator/
— MemoryAccessTraces/ (memory access traces
with hit/miss info generated via ChampSim
ChampSim)
— HeatmapRepresentation/ (scripts to convert
memory access traces into real access and real miss
heatmaps)

• Data/ (real access and miss heatmaps divided into
Train and Test sets)

• CacheBox_GAN/
— models/ (CB-GAN implementations
(with/without cache parameters, large models
included))
— Experiments/ (training and inference scripts
(RQ1–RQ4, RQ7, reference example))
— checkpoints/ (training checkpoints)

• TrainedModels/ (pre-trained checkpoint for RQ2)
• InferenceResults/ (synthetic miss heatmaps or-

ganized by experiment)
• ArchitecturalMetricCalc/ (scripts to compute

predicted and true cache hit rates)

2. Artifact check-list
• Algorithm: Cache hit-rate prediction using CB-GAN on

cache access heatmaps
• Program: Heatmap generation, CB-GAN train-

ing/inference, hit-rate calculation
• Transformations: Memory access traces to heatmap

conversion
• Model: CacheBox_GAN (PyTorch)
• Data set: Memory access traces generated by ChampSim

(SPEC, Ligra, Polybench)
• Run-time environment: Python, PyTorch, CUDA op-

tional
• Hardware: CPU supported, GPU recommended (tested

with NVIDIA RTX A4000)

• Run-time state: Trained model checkpoints included
• Execution: Heatmap generation, training, inference, hit-

rate calculation
• Metrics: True and predicted cache hit rates
• Output: Access/miss heatmaps, synthetic miss heatmaps,

hit-rate statistics
• Experiments: Reference example reproduces end-to-end

workflow; pre-trained model inference for RQ2; scripts
for RQ1–RQ4, RQ7 included for inspection

• Disk space required: 9GB unzipped
• Preparation time: Workflow ready if Python and

PyTorch installed; no automated installation provided
• Experiment runtime: Reference example inference:

10–30 min; full reference example: 1–1.5 hours
• Publicly available: Yes
• Workflow automation framework: Bash scripts
• Archived DOI: https://doi.org/10.5281/zenodo.16935883

3. Description

3.1. How to access. Artifact available at: https://doi.org/10.
5281/zenodo.16935883. Unpack and navigate to CacheBox.
All code, scripts, example data, and pre-trained models are
included.

3.2. Hardware dependencies.

• CPU-only execution supported (slower)
• GPU recommended for training (NVIDIA RTX

A4000 tested)
• Minimum RAM: 16 GB

3.3. Software dependencies.

• Python 3.8, 3.9, 3.10, or 3.11 (PyTorch 2.0.1+cu117
officially supports these versions; tested with 3.8.10)

• PyTorch 2.0.1+cu117
• CUDA (optional, for GPU acceleration)

Note: The provided ‘requirements.txt‘ lists the correct
PyTorch version, but we recommend installing PyTorch
separately first (using the provided ‘requirements.sh‘) so
the proper CUDA-enabled build is installed. PyTorch is only
required if you plan to run training or inference. If you are
only using the repository for heatmap generation or hit
rate calculation, PyTorch is not needed.

3.4. Data sets.

• Memory traces from ChampSim for SPEC, Ligra,
Polybench benchmarks

• Real access and miss heatmaps for SPEC, L1 64set-
12way cache configuration

• Synthetic miss heatmaps generated after running
inference on reference-model

3.5. Models.

• CacheBox_GAN implementation
• Pre-trained weights for RQ2
• Reference-model weights for quick testing
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4. Installation
1) Download artifact from https://doi.org/10.5281/

zenodo.16935883
2) Unzip the repository: > unzip CacheBox.zip
3) Install dependencies:

Run the setup script: >
./CacheBox/requirements.sh

requirements.sh script will:

• Create a virtual environment
• Install PyTorch 2.0.1 + CUDA 11.7
• Install all other dependencies from requirements.txt

(numpy, scipy, pandas)

5. Experiment workflow, Evaluation and Ex-
pected Results
5.1. Reference Example. This experiment generates real
access and miss heatmaps for the training set of an L1D
cache with a 64-set, 12-way configuration that contains
three SPEC benchmarks. It then trains a CB-GAN model
on these three benchmarks for 1 epoch. After training, the
model runs inference on 10 SPEC benchmarks to evaluate
performance. Finally, the hit rate calculation script calculates
the true and predicted cache hit rates, along with the
absolute percentage difference between them.
Convert memory access traces to heatmaps:.

• Run:
> cd HeatmapDataGenerator/
HeatmapRepresentation
> ./run_heatmap_generation.sh

• Generated heatmaps are saved to
Data/SPEC/L1-64set-12way_reference_example/
TRAIN.

• These heatmaps are identical to the ones in
Data/SPEC/L1-64set-12way/TRAIN.

• For training the CB-GAN model for the ref-
erence example, we use the heatmaps in
Data/SPEC/L1-64set-12way/TRAIN, so users do
not need to generate the heatmaps if they only
want to run the model training, inference and hit
rate calculation steps.

Train CB-GAN model and run inference:.

• Run:
> cd CacheBox_GAN
> ./Experiments/ReferenceExample.sh

• This script performs both training and inference
for the reference example. Training data is lo-
cated in Data/SPEC/L1-64set-12way/TRAIN, and
access heatmaps of inference benchmarks are in
Data/SPEC/L1-64set-12way/TEST/FULL.

• The trained model is saved to
CacheBox_GAN/checkpoints, and
inference results are stored in
InferenceResults/ReferenceExample/
L1-64set-12way.

• The trained model is identical to the
one in TrainedModels/ReferenceExample,
and the inference results match those
in InferenceResults/ReferenceExample/
L1-64set-12way_expected.

• Users do not need to run training or infer-
ence if they only want to calculate hit rates.
Alternatively, to run only training, comment out
the inference command in ReferenceExample.sh.
To run only inference, comment out the training
command in the same script.

Compute cache hit rates:.

• Run:
> cd ArchitecturalMetricCalc
> ./run_hitrate_calc.sh reference_example

• Calculates true hit rates using real access heatmaps
from Data/SPEC/L1-64set-12way/TEST/FULL
and real miss heatmaps from
Data/SPEC/L1-64set-12way/TEST/MISS.

• Calculates predicted hit rates us-
ing synthetic miss heatmaps from
InferenceResults/ReferenceExample/
L1-64set-12way along with real access heatmaps
from Data/SPEC/L1-64set-12way/TEST/FULL.

• All results are saved in
ArchitecturalMetricCalc/HitrateResults.

• The current run_hitrate_calc.sh script has
been updated to use synthetic heatmaps
from InferenceResults/ReferenceExample/
L1-64set-12way_expected, allowing hit rate
calculation without running previous steps.

• Update the run_hitrate_calc.sh
script to use synthetic heatmaps from
InferenceResults/ReferenceExample/
L1-64set-12way if needed.

• Expected results for hit rate calculation are available
in ArchitecturalMetricCalc/ExpectedResults.

5.2. Pre-trained model for RQ2. This experiment uses
the pre-trained RQ2 model, trained on four L1D cache
configurations (64set-12way, 128set-12way, 128set-6way,
128set-3way) with 150 SPEC benchmarks. The experiment
runs inference on 10 SPEC benchmarks from the 64set-
12way configuration, a subset of the 39 SPEC benchmarks
evaluated in the paper for this cache configuration. Finally,
it calculates the true and predicted hit rates, producing
results for a subset of benchmarks corresponding to 64set-
12way configuration as shown in Figure 8 in the paper.
Details to run provided in the Readme.

5.3. Other Experiments (RQ1, RQ4, RQ7). Scripts to run
training and inference for all these experiments are present
in Experiments/. The Data/ folder contains placeholders
for the various data files used in these experiments. These
placeholders allow the experiment scripts to run without
errors. The folders do not contain actual data to avoid
increasing repository size.
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